Перевод: со всех языков на все языки

со всех языков на все языки

Stephenson, George

  • 1 Stephenson, George

    [br]
    b. 9 June 1781 Wylam, Northumberland, England
    d. 12 August 1848 Tapton House, Chesterfield, England
    [br]
    English engineer, "the father of railways".
    [br]
    George Stephenson was the son of the fireman of the pumping engine at Wylam colliery, and horses drew wagons of coal along the wooden rails of the Wylam wagonway past the house in which he was born and spent his earliest childhood. While still a child he worked as a cowherd, but soon moved to working at coal pits. At 17 years of age he showed sufficient mechanical talent to be placed in charge of a new pumping engine, and had already achieved a job more responsible than that of his father. Despite his position he was still illiterate, although he subsequently learned to read and write. He was largely self-educated.
    In 1801 he was appointed Brakesman of the winding engine at Black Callerton pit, with responsibility for lowering the miners safely to their work. Then, about two years later, he became Brakesman of a new winding engine erected by Robert Hawthorn at Willington Quay on the Tyne. Returning collier brigs discharged ballast into wagons and the engine drew the wagons up an inclined plane to the top of "Ballast Hill" for their contents to be tipped; this was one of the earliest applications of steam power to transport, other than experimentally.
    In 1804 Stephenson moved to West Moor pit, Killingworth, again as Brakesman. In 1811 he demonstrated his mechanical skill by successfully modifying a new and unsatisfactory atmospheric engine, a task that had defeated the efforts of others, to enable it to pump a drowned pit clear of water. The following year he was appointed Enginewright at Killingworth, in charge of the machinery in all the collieries of the "Grand Allies", the prominent coal-owning families of Wortley, Liddell and Bowes, with authorization also to work for others. He built many stationary engines and he closely examined locomotives of John Blenkinsop's type on the Kenton \& Coxlodge wagonway, as well as those of William Hedley at Wylam.
    It was in 1813 that Sir Thomas Liddell requested George Stephenson to build a steam locomotive for the Killingworth wagonway: Blucher made its first trial run on 25 July 1814 and was based on Blenkinsop's locomotives, although it lacked their rack-and-pinion drive. George Stephenson is credited with building the first locomotive both to run on edge rails and be driven by adhesion, an arrangement that has been the conventional one ever since. Yet Blucher was far from perfect and over the next few years, while other engineers ignored the steam locomotive, Stephenson built a succession of them, each an improvement on the last.
    During this period many lives were lost in coalmines from explosions of gas ignited by miners' lamps. By observation and experiment (sometimes at great personal risk) Stephenson invented a satisfactory safety lamp, working independently of the noted scientist Sir Humphry Davy who also invented such a lamp around the same time.
    In 1817 George Stephenson designed his first locomotive for an outside customer, the Kilmarnock \& Troon Railway, and in 1819 he laid out the Hetton Colliery Railway in County Durham, for which his brother Robert was Resident Engineer. This was the first railway to be worked entirely without animal traction: it used inclined planes with stationary engines, self-acting inclined planes powered by gravity, and locomotives.
    On 19 April 1821 Stephenson was introduced to Edward Pease, one of the main promoters of the Stockton \& Darlington Railway (S \& DR), which by coincidence received its Act of Parliament the same day. George Stephenson carried out a further survey, to improve the proposed line, and in this he was assisted by his 18-year-old son, Robert Stephenson, whom he had ensured received the theoretical education which he himself lacked. It is doubtful whether either could have succeeded without the other; together they were to make the steam railway practicable.
    At George Stephenson's instance, much of the S \& DR was laid with wrought-iron rails recently developed by John Birkinshaw at Bedlington Ironworks, Morpeth. These were longer than cast-iron rails and were not brittle: they made a track well suited for locomotives. In June 1823 George and Robert Stephenson, with other partners, founded a firm in Newcastle upon Tyne to build locomotives and rolling stock and to do general engineering work: after its Managing Partner, the firm was called Robert Stephenson \& Co.
    In 1824 the promoters of the Liverpool \& Manchester Railway (L \& MR) invited George Stephenson to resurvey their proposed line in order to reduce opposition to it. William James, a wealthy land agent who had become a visionary protagonist of a national railway network and had seen Stephenson's locomotives at Killingworth, had promoted the L \& MR with some merchants of Liverpool and had carried out the first survey; however, he overreached himself in business and, shortly after the invitation to Stephenson, became bankrupt. In his own survey, however, George Stephenson lacked the assistance of his son Robert, who had left for South America, and he delegated much of the detailed work to incompetent assistants. During a devastating Parliamentary examination in the spring of 1825, much of his survey was shown to be seriously inaccurate and the L \& MR's application for an Act of Parliament was refused. The railway's promoters discharged Stephenson and had their line surveyed yet again, by C.B. Vignoles.
    The Stockton \& Darlington Railway was, however, triumphantly opened in the presence of vast crowds in September 1825, with Stephenson himself driving the locomotive Locomotion, which had been built at Robert Stephenson \& Co.'s Newcastle works. Once the railway was at work, horse-drawn and gravity-powered traffic shared the line with locomotives: in 1828 Stephenson invented the horse dandy, a wagon at the back of a train in which a horse could travel over the gravity-operated stretches, instead of trotting behind.
    Meanwhile, in May 1826, the Liverpool \& Manchester Railway had successfully obtained its Act of Parliament. Stephenson was appointed Engineer in June, and since he and Vignoles proved incompatible the latter left early in 1827. The railway was built by Stephenson and his staff, using direct labour. A considerable controversy arose c. 1828 over the motive power to be used: the traffic anticipated was too great for horses, but the performance of the reciprocal system of cable haulage developed by Benjamin Thompson appeared in many respects superior to that of contemporary locomotives. The company instituted a prize competition for a better locomotive and the Rainhill Trials were held in October 1829.
    Robert Stephenson had been working on improved locomotive designs since his return from America in 1827, but it was the L \& MR's Treasurer, Henry Booth, who suggested the multi-tubular boiler to George Stephenson. This was incorporated into a locomotive built by Robert Stephenson for the trials: Rocket was entered by the three men in partnership. The other principal entrants were Novelty, entered by John Braithwaite and John Ericsson, and Sans Pareil, entered by Timothy Hackworth, but only Rocket, driven by George Stephenson, met all the organizers' demands; indeed, it far surpassed them and demonstrated the practicability of the long-distance steam railway. With the opening of the Liverpool \& Manchester Railway in 1830, the age of railways began.
    Stephenson was active in many aspects. He advised on the construction of the Belgian State Railway, of which the Brussels-Malines section, opened in 1835, was the first all-steam railway on the European continent. In England, proposals to link the L \& MR with the Midlands had culminated in an Act of Parliament for the Grand Junction Railway in 1833: this was to run from Warrington, which was already linked to the L \& MR, to Birmingham. George Stephenson had been in charge of the surveys, and for the railway's construction he and J.U. Rastrick were initially Principal Engineers, with Stephenson's former pupil Joseph Locke under them; by 1835 both Stephenson and Rastrick had withdrawn and Locke was Engineer-in-Chief. Stephenson remained much in demand elsewhere: he was particularly associated with the construction of the North Midland Railway (Derby to Leeds) and related lines. He was active in many other places and carried out, for instance, preliminary surveys for the Chester \& Holyhead and Newcastle \& Berwick Railways, which were important links in the lines of communication between London and, respectively, Dublin and Edinburgh.
    He eventually retired to Tapton House, Chesterfield, overlooking the North Midland. A man who was self-made (with great success) against colossal odds, he was ever reluctant, regrettably, to give others their due credit, although in retirement, immensely wealthy and full of honour, he was still able to mingle with people of all ranks.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers, on its formation in 1847. Order of Leopold (Belgium) 1835. Stephenson refused both a knighthood and Fellowship of the Royal Society.
    Bibliography
    1815, jointly with Ralph Dodd, British patent no. 3,887 (locomotive drive by connecting rods directly to the wheels).
    1817, jointly with William Losh, British patent no. 4,067 (steam springs for locomotives, and improvements to track).
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, Longman (the best modern biography; includes a bibliography).
    S.Smiles, 1874, The Lives of George and Robert Stephenson, rev. edn, London (although sycophantic, this is probably the best nineteenthcentury biography).
    PJGR

    Biographical history of technology > Stephenson, George

  • 2 George Stephenson

    s.
    Jorge Stephenson, Stephenson, George Stephenson.

    Nuevo Diccionario Inglés-Español > George Stephenson

  • 3 Stephenson

    m.
    Stephenson, George Stephenson.

    Spanish-English dictionary > Stephenson

  • 4 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 5 England, George

    [br]
    b. 1811 or 1812 Newcastle upon Tyne, England
    d. 4 March 1878 Cannes, France
    [br]
    English locomotive builder who built the first locomotives for the narrow-gauge Festiniog Railway.
    [br]
    England trained with John Penn \& Sons, marine engine and boilermakers, and set up his own business at Hatcham Iron Works, South London, in about 1840. This was initially a general engineering business and made traversing screw jacks, which England had patented, but by 1850 it was building locomotives. One of these, Little England, a 2–2– 2T light locomotive owing much to the ideas of W.Bridges Adams, was exhibited at the Great Exhibition of 1851, and England then prospered, supplying many railways at home and abroad with small locomotives. In 1863 he built two exceptionally small 0–4–0 tank locomotives for the Festiniog Railway, which enabled the latter's Manager and Engineer C.E. Spooner to introduce steam traction on this line with its gauge of just under 2 ft (60 cm). England's works had a reputation for good workmanship, suggesting he inspired loyalty among his employees, yet he also displayed increasingly tyrannical behaviour towards them: the culmination was a disastrous strike in 1865 that resulted in the loss of a substantial order from the South Eastern Railway. From 1866 George England became associated with development of locomotives to the patent of Robert Fairlie, but in 1869 he retired due to ill health and leased his works to a partnership of his son (also called George England), Robert Fairlie and J.S.Fraser under the title of the Fairlie Engine \& Steam Carriage Company. However, George England junior died within a few months, locomotive production ceased in 1870 and the works was sold off two years later.
    [br]
    Bibliography
    1839, British patent no. 8,058 (traversing screw jack).
    Further Reading
    Aspects of England's life and work are described in: C.H.Dickson, 1961, "Locomotive builders of the past", Stephenson Locomotive Society Journal, p. 138.
    A.R.Bennett, 1907, "Locomotive building in London", Railway Magazine, p. 382.
    R.Weaver, 1983, "English Ponies", Festiniog Railway Magazine (spring): 18.
    PJGR

    Biographical history of technology > England, George

  • 6 Jorge Stephenson

    m.
    George Stephenson.

    Spanish-English dictionary > Jorge Stephenson

  • 7 Land transport

    [br]
    Austin, Herbert
    Hamilton, Harold Lee
    Issigonis, Sir Alexander Arnold Constantine
    Ma Jun
    Morris, William Richard
    Sauerbrun, Charles de

    Biographical history of technology > Land transport

  • 8 Railways and locomotives

    [br]
    Hamilton, Harold Lee

    Biographical history of technology > Railways and locomotives

  • 9 Hedley, William

    [br]
    b. 13 July 1779 Newburn, Northumberland, England
    d. 9 January 1843 Lanchester, Co. Durham, England
    [br]
    English coal-mine manager, pioneer in the construction and use of steam locomotives.
    [br]
    The Wylam wagonway passed Newburn, and Hedley, who went to school at Wylam, must have been familiar with this wagonway from childhood. It had been built c.1748 to carry coal from Wylam Colliery to the navigable limit of the Tyne at Lemington. In 1805 Hedley was appointed viewer, or manager, of Wylam Colliery by Christopher Blackett, who had inherited the colliery and wagonway in 1800. Unlike most Tyneside wagonways, the gradient of the Wylam line was insufficient for loaded wagons to run down by gravity and they had to be hauled by horses. Blackett had a locomotive, of the type designed by Richard Trevithick, built at Gateshead as early as 1804 but did not take delivery, probably because his wooden track was not strong enough. In 1808 Blackett and Hedley relaid the wagonway with plate rails of the type promoted by Benjamin Outram, and in 1812, following successful introduction of locomotives at Middleton by John Blenkinsop, Blackett asked Hedley to investigate the feasibility of locomotives at Wylam. The expense of re-laying with rack rails was unwelcome, and Hedley experimented to find out the relationship between the weight of a locomotive and the load it could move relying on its adhesion weight alone. He used first a model test carriage, which survives at the Science Museum, London, and then used a full-sized test carriage laden with weights in varying quantities and propelled by men turning handles. Having apparently satisfied himself on this point, he had a locomotive incorporating the frames and wheels of the test carriage built. The work was done at Wylam by Thomas Waters, who was familiar with the 1804 locomotive, Timothy Hackworth, foreman smith, and Jonathan Forster, enginewright. This locomotive, with cast-iron boiler and single cylinder, was unsatisfactory: Hackworth and Forster then built another locomotive to Hedley's design, with a wrought-iron return-tube boiler, two vertical external cylinders and drive via overhead beams through pinions to the two axles. This locomotive probably came into use in the spring of 1814: it performed well and further examples of the type were built. Their axle loading, however, was too great for the track and from about 1815 each locomotive was mounted on two four-wheeled bogies, the bogie having recently been invented by William Chapman. Hedley eventually left Wylam in 1827 to devote himself to other colliery interests. He supported the construction of the Clarence Railway, opened in 1833, and sent his coal over it in trains hauled by his own locomotives. Two of his Wylam locomotives survive— Puffing Billy at the Science Museum, London, and Wylam Dilly at the Royal Museum of Scotland, Edinburgh—though how much of these is original and how much dates from the period 1827–32, when the Wylam line was re-laid with edge rails and the locomotives reverted to four wheels (with flanges), is a matter of mild controversy.
    [br]
    Further Reading
    P.R.B.Brooks, 1980, William Hedley Locomotive Pioneer, Newcastle upon Tyne: Tyne \& Wear Industrial Monuments Trust (a good recent short biography of Hedley, with bibliography).
    R.Young, 1975, Timothy Hackworth and the Locomotive, Shildon: Shildon "Stockton \& Darlington Railway" Silver Jubilee Committee; orig. pub. 1923, London.
    C.R.Warn, 1976, Waggonways and Early Railways of Northumberland, Newcastle upon Tyne: Frank Graham.
    PJGR

    Biographical history of technology > Hedley, William

  • 10 Winans, Ross

    [br]
    b. 17 October 1796 Sussex County, New Jersey, USA
    d. 11 April 1877 Baltimore, Maryland, USA
    [br]
    American inventor and locomotive builder.
    [br]
    Winans arrived in Baltimore in 1828 to sell horses to the Baltimore \& Ohio Railroad (B \& O), which was then under construction. To reduce friction in rail vehicles, he devised a system of axles which ran in oil-baths, with outside bearings. He demonstrated a hand-driven wagon with this system at the Rainhill Trials; the Liverpool \& Manchester Railway bought some wagons fitted with the system, but found them on test to be inferior to wagons with grease axle boxes. Back in Baltimore, Winans assisted Peter Cooper in building Tom Thumb. He took charge of the B \& O shops c.1834; he is said to have built the first eight-wheeled passenger coach and to have been the first to mount such a coach on two four-wheeled trucks or bogies. The arrangement soon became standard American practice, and, with partners, he built over 100 locomotives for the B \& O. In 1847 he pioneered the use of anthracite as locomotive fuel, and from 1848 he built his "Camel" locomotives with the driver's cab above the boiler.
    [br]
    Further Reading
    J.H.White Jr, 1979, A History of the American Locomotive-Its Development: 1830–1880, New York: Dover Publications Inc.
    P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia of World Railway Locomotives, London: Hutchinson, p. 503 (biography).
    Dictionary of American Biography.
    H.Booth, 1980, Henry Booth, Ilfracombe: Arthur H.Stockwell, pp. 75 and 91–2 (for the Liverpool \& Manchester wagons).
    PJGR

    Biographical history of technology > Winans, Ross

  • 11 Стефенсон, Джордж

    George Stephenson

    Русско-словенский словарь > Стефенсон, Джордж

  • 12 Locke, Joseph

    [br]
    b. 9 August 1805 Attercliffe, Yorkshire, England
    d. 18 September 1860 Moffat, Scotland
    [br]
    English civil engineer who built many important early main-line railways.
    [br]
    Joseph Locke was the son of a colliery viewer who had known George Stephenson in Northumberland before moving to Yorkshire: Locke himself became a pupil of Stephenson in 1823. He worked with Robert Stephenson at Robert Stephenson \& Co.'s locomotive works and surveyed railways, including the Leeds \& Selby and the Canterbury \& Whitstable, for George Stephenson.
    When George Stephenson was appointed Chief Engineer for construction of the Liverpool \& Manchester Railway in 1826, the first resident engineer whom he appointed to work under him was Locke, who took a prominent part in promoting traction by locomotives rather than by fixed engines with cable haulage. The pupil eventually excelled the master and in 1835 Locke was appointed in place of Stephenson as Chief Engineer for construction of the Grand Junction Railway. He introduced double-headed rails carried in chairs on wooden sleepers, the prototype of the bullhead track that became standard on British railways for more than a century. By preparing the most detailed specifications, Locke was able to estimate the cost of the railway much more accurately than was usual at that time, and it was built at a cost close to the estimate; this made his name. He became Engineer to the London \& Southampton Railway and completed the Sheffield, Ashton-under-Lyme \& Manchester Railway, including the 3-mile (3.8 km) Woodhead Tunnel, which had been started by Charles Vignoles. He was subsequently responsible for many British main lines, including those of the companies that extended the West Coast Route northwards from Preston to Scotland. He was also Engineer to important early main lines in France, notably that from Paris to Rouen and its extension to Le Havre, and in Spain and Holland. In 1847 Locke was elected MP for Honiton.
    Locke appreciated early in his career that steam locomotives able to operate over gradients steeper than at first thought practicable would be developed. Overall his monument is not great individual works of engineering, such as the famous bridges of his close contemporaries Robert Stephenson and I.K. Brunel, but a series of lines built economically but soundly through rugged country without such works; for example, the line over Shap, Cumbria.
    [br]
    Principal Honours and Distinctions
    Officier de la Légion d'honneur, France. FRS. President, Institution of Civil Engineers 1858–9.
    Further Reading
    Obituary, 1861, Minutes of Proceedings of the Institution of Civil Engineers 20. L.T.C.Rolt, 1962, Great Engineers, London: G. Bell \& Sons, ch. 6.
    Industrial Heritage, 1991, Vol. 9(2):9.
    See also: Brassey, Thomas
    PJGR

    Biographical history of technology > Locke, Joseph

  • 13 Hackworth, Timothy

    [br]
    b. 22 December 1786 Wylam, Northumberland, England
    d. 7 July 1850 Shildon, Co. Durham, England
    [br]
    English engineer, pioneer in construction and operation of steam locomotives.
    [br]
    Hackworth trained under his father, who was Foreman Blacksmith at Wylam colliery, and succeeded him upon his death in 1807. Between 1812 and 1816 he helped to build and maintain the Wylam locomotives under William Hedley. He then moved to Walbottle colliery, but during 1824 he took temporary charge of Robert Stephenson \& Co.'s works while George Stephenson was surveying the Liverpool \& Manchester Railway and Robert Stephenson was away in South America. In May 1825 Hackworth was appointed to the Stockton \& Darlington Railway (S \& DR) "to have superintendence of the permanent (i.e. stationary) and locomotive engines". He established the workshops at Shildon, and when the railway opened in September he became in effect the first locomotive superintendent of a railway company. From experience of operating Robert Stephenson \& Co.'s locomotives he was able to make many detail improvements, notably spring safety valves. In 1827 he designed and built the locomotive Royal George, with six wheels coupled and inverted vertical cylinders driving the rear pair. From the pistons, drive was direct by way of piston rods and connecting rods to crankpins on the wheels, the first instance of the use of this layout on a locomotive. Royal George was the most powerful and satisfactory locomotive on the S \& DR to date and was the forerunner of Hackworth's type of heavy-goods locomotive, which was built until the mid-1840s.
    For the Rainhill Trials in 1829 Hackworth built and entered the locomotive Sans Pareil, which was subsequently used on the Bol ton \& Leigh Railway and is now in the Science Museum, London. A working replica was built for the 150th anniversary of the Liverpool \& Manchester Railway in 1980. In 1833 a further agreement with the S \& DR enabled Hackworth, while remaining in charge of their locomotives, to set up a locomotive and engineering works on his own account. Its products eventually included locomotives for the London, Brighton \& South Coast and York, Newcastle \& Berwick Railways, as well as some of the earliest locomotives exported to Russia and Canada. Hackworth's son, John Wesley Hackworth, was also an engineer and invented the radial valve gear for steam engines that bears his name.
    [br]
    Further Reading
    R.Young, 1975, Timothy Hackworth and the Locomotive, Shildon: Shildon "Stockton \& Darlington Railway" Silver Jubilee Committee; orig. pub. 1923, London (tends to emphasize Hackworth's achievements at the expense of other contemporary engineers).
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longmans (describes much of Hackworth's work and is more objective).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, London: The Locomotive Publishing Co.
    PJGR

    Biographical history of technology > Hackworth, Timothy

  • 14 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

  • 15 Vignoles, Charles Blacker

    [br]
    b. 31 May 1793 Woodbrook, Co. Wexford, Ireland
    d. 17 November 1875 Hythe, Hampshire, England
    [br]
    English surveyor and civil engineer, pioneer of railways.
    [br]
    Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.
    In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.
    Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.
    After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.
    Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.
    Bibliography
    1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).
    1823, Observations upon the Floridas, New York: Bliss \& White.
    1870, Address on His Election as President of the Institution of Civil Engineers.
    Further Reading
    K.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).
    PJGR

    Biographical history of technology > Vignoles, Charles Blacker

  • 16 Booth, Henry

    [br]
    b. 4 April 1789 Liverpool, England
    d. 28 March 1869 Liverpool, England
    [br]
    English railway administrator and inventor.
    [br]
    Booth followed his father as a Liverpool corn merchant but had great mechanical aptitude. In 1824 he joined the committee for the proposed Liverpool \& Manchester Railway (L \& MR) and after the company obtained its Act of Parliament in 1826 he was appointed Treasurer.
    In 1829 the L \& MR announced a prize competition, the Rainhill Trials, for an improved steam locomotive: Booth, realizing that the power of a locomotive depended largely upon its capacity to raise steam, had the idea that this could be maximized by passing burning gases from the fire through the boiler in many small tubes to increase the heating surface, rather than in one large one, as was then the practice. He was apparently unaware of work on this type of boiler even then being done by Marc Seguin, and the 1791 American patent by John Stevens. Booth discussed his idea with George Stephenson, and a boiler of this type was incorporated into the locomotive Rocket, which was built by Robert Stephenson and entered in the Trials by Booth and the two Stephensons in partnership. The boiler enabled Rocket to do all that was required in the trials, and far more: it became the prototype for all subsequent conventional locomotive boilers.
    After the L \& MR opened in 1830, Booth as Treasurer became in effect the general superintendent and was later General Manager. He invented screw couplings for use with sprung buffers. When the L \& MR was absorbed by the Grand Junction Railway in 1845 he became Secretary of the latter, and when, later the same year, that in turn amalgamated with the London \& Birmingham Railway (L \& BR) to form the London \& North Western Railway (L \& NWR), he became joint Secretary with Richard Creed from the L \& BR.
    Earlier, completion in 1838 of the railway from London to Liverpool had brought problems with regard to local times. Towns then kept their own time according to their longitude: Birmingham time, for instance, was 7¼ minutes later than London time. This caused difficulties in railway operation, so Booth prepared a petition to Parliament on behalf of the L \& MR that London time should be used throughout the country, and in 1847 the L \& NWR, with other principal railways and the Post Office, adopted Greenwich time. It was only in 1880, however, that the arrangement was made law by Act of Parliament.
    [br]
    Bibliography
    1835. British patent no. 6,814 (grease lubricants for axleboxes). 1836. British patent no. 6,989 (screw couplings).
    Booth also wrote several pamphlets on railways, uniformity of time, and political matters.
    Further Reading
    H.Booth, 1980, Henry Booth, Ilfracombe: Arthur H.Stockwell (a good full-length biography, the author being the great-great-nephew of his subject; with bibliography).
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Booth, Henry

  • 17 Rastrick, John Urpeth

    [br]
    b. 26 January 1780 Morpeth, England
    d. 1 November 1856 Chertsey, England
    [br]
    English engineer whose career spanned the formative years of steam railways, from constructing some of the earliest locomotives to building great trunk lines.
    [br]
    John Urpeth Rastrick, son of an engineer, was initially articled to his father and then moved to Ketley Ironworks, Shropshire, c. 1801. In 1808 he entered into a partnership with John Hazledine at Bridgnorth, Shropshire: Hazledine and Rastrick built many steam engines to the designs of Richard Trevithick, including the demonstration locomotive Catch-Me-Who-Can. The firm also built iron bridges, notably the bridge over the River Wye at Chepstow in 1815–16.
    Between 1822 and 1826 the Stratford \& Moreton Railway was built under Rastrick's direction. Malleable iron rails were laid, in one of the first instances of their use. They were supplied by James Foster of Stourbridge, with whom Rastrick went into partnership after the death of Hazledine. In 1825 Rastrick was one of a team of engineers sent by the committee of the proposed Liverpool \& Manchester Railway (L \& MR) to carry out trials of locomotives built by George Stephenson on the Killingworth Waggonway. Early in 1829 the directors of the L \& MR, which was by then under construction, sent Rastrick and James Walker to inspect railways in North East England and report on the relative merits of steam locomotives and fixed engines with cable haulage. They reported, rather hesitantly, in favour of the latter, particularly the reciprocal system of Benjamin Thompson. In consequence the Rainhill Trials, at which Rastrick was one of the judges, were held that October. In 1829 Rastrick constructed the Shutt End colliery railway in Worcestershire, for which Foster and Rastrick built the locomotive Agenoria; this survives in the National Railway Museum. Three similar locomotives were built to the order of Horatio Allen for export to the USA.
    From then until he retired in 1847 Rastrick found ample employment surveying railways, appearing as a witness before Parliamentary committees, and supervising construction. Principally, he surveyed the southern part of the Grand Junction Railway, which was built for the most part by Joseph Locke, and the line from Manchester to Crewe which was eventually built as the Manchester \& Birmingham Railway. The London \& Brighton Railway (Croydon to Brighton) was his great achievement: built under Rastrick's supervision between 1836 and 1840, it included three long tunnels and the magnificent Ouse Viaduct. In 1845 he was Engineer to the Gravesend \& Rochester Railway, the track of which was laid through the Thames \& Medway Canal's Strood Tunnel, partly on the towpath and partly on a continuous staging over the water.
    [br]
    Principal Honours and Distinctions
    FRS 1837.
    Bibliography
    1829, with Walker, Report…on the Comparative Merits of Locomotive and Fixed Engines, Liverpool.
    Further Reading
    C.F.Dendy Marshall, 1953, A History of Railway Locomotives Down to the End of the Year 1831, The Locomotive Publishing Co.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    C.Hadfield and J.Norris, 1962, Waterways to Stratford, Newton Abbot: David \& Charles (covers Stratford and Moreton Railway).
    PJGR

    Biographical history of technology > Rastrick, John Urpeth

  • 18 Geordie

    ['dʒɔːdɪ] 1. разг.
    Джо́рди (прозвище жителя или уроженца графства Нортумберленд, особ. Тайнсайда [ Tyneside])
    2. разг.
    рудни́чная ла́мпа "джо́рди" (изобретена Джорджем Стефенсоном [George Stephenson, 1781-1848])
    3. разг.
    у́гольщик, углево́з "джо́рди" ( судно)
    4. разг.
    джо́рди, шахтёр-у́гольщик

    English-Russian Great Britain dictionary (Великобритания. Лингвострановедческий словарь) > Geordie

  • 19 Gregory, Sir Charles Hutton

    [br]
    b. 14 October 1817 Woolwich, England
    d. 10 January 1898 London, England
    [br]
    English civil engineer, inventor of the railway semaphore signal.
    [br]
    Gregory's father was Professor of Mathematics at the Royal Military Academy, Woolwich.C.H. Gregory himself, after working for Robert Stephenson, was appointed Engineer to the London \& Croydon Railway in 1839. On it, at New Cross in 1841, he installed a semaphore signal derived from signalling apparatus used by the Royal Navy; two hinged semaphore arms projected either side from the top of a post, signalling to drivers of trains in each direction of travel. In horizontal position each arm signified "danger", an arm inclined at 45° meant "caution" and the vertical position, in which the arms disappeared within a slot in the post, meant "all right". Gregory's signal was the forerunner of semaphore signals adopted on railways worldwide. In 1843 Gregory invented the stirrup frame: signal arms were connected to stirrups that were pushed down by the signalman's foot in order to operate them, while the points were operated by levers. The stirrups were connected together to prevent conflicting signals from being shown. This was a predecessor of interlocking. In 1846 Gregory became Engineer to the Bristol \& Exeter Railway, where in 1848 he co-operated with W.B. Adams in the development and operation of the first self-propelled railcar. He later did civil engineering work in Italy and France, was Engineer to the Somerset Central and Dorset Central railways and became Consulting Engineer for the government railways in Ceylon (now Sri Lanka), Cape of Good Hope, Straits Settlements and Trinidad.
    [br]
    Principal Honours and Distinctions
    Companion of the Order of St Michael and St George 1876. Knight Commander of the Order of St Michael and St George 1883. President, Institution of Civil Engineers 1867– 8.
    Bibliography
    1841, Practical Rules for the Management of a Locomotive Engine, London (one of the earliest such textbooks).
    Further Reading
    Obituary, 1898, Engineering 65 (14 January). See also Saxby, John.
    PJGR

    Biographical history of technology > Gregory, Sir Charles Hutton

  • 20 the Rocket

    ['rɔkɪt]
    "Раке́та" (один из паровозов, построенных Дж.Стефенсоном [George Stephenson, 1781-1848]; победил в соревнованиях локомотивов, организованных в 1828; имел мощность в 13 лошадиных сил и среднюю скорость ок. 30 км в час)

    English-Russian Great Britain dictionary (Великобритания. Лингвострановедческий словарь) > the Rocket

См. также в других словарях:

  • Stephenson, George — Stephenson, George, der Hauptbegründer des Eisenbahnwesens, geboren am 8. Juni 1781 zu Wylam am Tyne unweit Newcastle (in der englischen Grafschaft Northumberland), gestorben am 12. August 1848 zu Tapton House bei Chesterfield, war als zweites… …   Enzyklopädie des Eisenbahnwesens

  • Stephenson, George — born June 9, 1781, Wylam, Northumberland, Eng. died Aug. 12, 1848, Chesterfield, Derbyshire English engineer, principal inventor of the locomotive. Son of a coal mine mechanic, he himself became chief mechanic at a coal mine, where his interest… …   Universalium

  • Stephenson, George — ► (1781 1848) Ingeniero británico. En 1812 reemplazó los carriles de madera por otros de hierro y en 1814 hizo circular la primera máquina de vapor sobre ruedas (la máquina Blucher), que construyó para arrastrar vagonetas. En 1825 se inauguró el… …   Enciclopedia Universal

  • STEPHENSON, GEORGE —    inventor of the locomotive, born, the son of a poor colliery engineman, at Wylam, near Newcastle; was early set to work, first as a cowherd and then as a turnip hoer, and by 15 was earning 12s. a week as fireman at Throckley Bridge Colliery,… …   The Nuttall Encyclopaedia

  • Stephenson,George — Ste·phen·son (stēʹvən sən), George. 1781 1848. British railway pioneer who built a practical steam locomotive (1814) and the first passenger railway (1825). His son Robert (1803 1859) built railroads, locomotives, and bridges. * * * …   Universalium

  • Stephenson, George Robert — ▪ British railroad engineer born Oct. 20, 1819, Newcastle upon Tyne, Northumberland, Eng. died Oct. 26, 1905, Cheltenham, Gloucestershire       pioneer English railroad engineer who assisted his uncle George Stephenson and his cousin Robert… …   Universalium

  • George Stephenson (disambiguation) — George Stephenson (1781 ndash;1848) was an English engineer, known as the Father of Railways .George Stephenson may also refer to:*George Stephenson (manager) (born 1900), former professional football manager at Huddersfield Town *George… …   Wikipedia

  • George Stephenson (rugby) — Pour les articles homonymes, voir Stephenson. George Vaughan Stephenson est né le 22 décembre 1901 à Dromore,Co.Down (Irlande). Il est décédé le 6 août 1970 à Londres (Angleterre). C’est un joueur de rugby à XV, qui joue avec l équipe d Irlande… …   Wikipédia en Français

  • George stephenson (rugby) — Pour les articles homonymes, voir Stephenson. George Vaughan Stephenson est né le 22 décembre 1901 à Dromore,Co.Down (Irlande). Il est décédé le 6 août 1970 à Londres (Angleterre). C’est un joueur de rugby à XV, qui joue avec l équipe d Irlande… …   Wikipédia en Français

  • Stephenson — Stephenson, George * * * (as used in expressions) Baden Powell (de Gilwell), Robert Stephenson Smyth, 1 barón Stephenson, George Stephenson, Robert …   Enciclopedia Universal

  • George — George, David Lloyd George, Henry George, Pierre George, Stefan * * * (as used in expressions) Aberdeen, George Hamilton Gordon, 4 conde de George William Russell Akerlof, George A. Alexander, Harold (Rupert Leofric George) Alexander, 1 conde… …   Enciclopedia Universal

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»